On the hydrogen neutral outflowing disks of B[e] supergiants

نویسندگان

  • M. Kraus
  • M. Borges Fernandes
چکیده

Context. B[e] supergiants are known to possess geometrically thick dusty disks. Disk-forming wind models in the literature have, however, been found to be insufficient in reproducing the observed dust emission. This problem arises due to the severe assumption that, as for classical Be stars, the near-infrared excess emission originates in the disk. Modeling of the free-free and free-bound emission therefore results in an upper limit for the disk mass loss rate as well as for the disk opacity. Dust condensation in the disk can thus severely be hampered. Aims. In order to overcome the dust formation problem, and based on our high-resolution optical spectroscopy and model results, we propose a revised scenario for the non-spherical winds of B[e] supergiants: a normal B-type line-driven polar wind and an outflowing disk-forming wind that is neutral in hydrogen at, or very close to the stellar surface. Methods. We concentrate on the pole-on seen LMC B[e] supergiant R 126 and calculate the line luminosities of the optical [O] emission lines and their emergent line profiles with an outflowing disk scenario. In addition, we compute the free-free and free-bound emission from a line-driven polar wind and model the spectral energy distribution in the optical and near-infrared. Results. Good fits to the [O] line luminosities are achieved for an outflowing disk that is neutral in hydrogen right from the stellar surface. Neutral thereby means that hydrogen is ionized by less than 0.1%. Consequently, the free-free and free-bound emission cannot (dominantly) arise from the disk and cannot limit the disk mass loss rate. The hydrogen neutral outflowing disk scenario therefore provides an ideal environment for efficient dust formation. The spectral energy distribution in the optical and near-infrared range can be well fitted with the stellar continuum plus free-free and free-bound emission from the polar line-driven wind. Our modeling further delivers minimum values for Ṁdisk >∼ 2.5 × 10−5 M⊙yr and for the density contrast between equatorial and polar wind of ∼ 10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionization structure in the disks and winds of B [ e ] stars

We investigate the ionization structure in the non-spherical winds and disks of B[e] stars. Especially the luminous B[e] supergiants seem to have outflowing disks which are neutral in hydrogen already close to the stellar surface. The existence of neutral material so close to the central star is surprising and needs to be investigated in detail. We perform our model calculations mainly in the e...

متن کامل

Ionization structure in the winds of B[e] supergiants II. Influence of rotation on the formation of equatorial hydrogen neutral zones

Context. B[e] supergiants are known to have non-spherical winds, and the existence of disks that are neutral in hydrogen close to their stellar surface has been postulated. A suitable mechanism to produce non-spherical winds seems to be rapid rotation, and at least for three B[e] supergiants in the Magellanic Clouds rotation velocities at a substantial fraction of their critical velocity have b...

متن کامل

Ionization structure in the winds of B [ e ] supergiants I . Ionization equilibrium calculations in a H plus He wind

The non-spherically symmetric winds of B[e] supergiants are investigated. An empirical density distribution is chosen that accounts for the density concentrations and ratios derived from observations, and our model winds are assumed to contain only hydrogen and helium. We first calculate the approximate ionization radii for H and He and compare the results with the ionization fractions calculat...

متن کامل

Outflowing disk formation in B[e] supergiants due to rotation and bi–stability in radiation driven winds

The effects of rapid rotation and bi–stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are re–investigated. Based upon a new slow solution for different high rotational radiation driven winds (Curé 2004) and the fact that bi–stability allows a change in the line–force parameters (α, k, and δ), the equatorial densities are about 102–104 times hi...

متن کامل

Single massive stars at the critical rotational velocity: possible links with Be and B[e] stars

Using single star models including the effects of shellular rotation with and without magnetic fields, we show that massive stars at solar metallicity with initial masses lower than about 20-25 M⊙ and with an initial rotation above ∼ 350 km s likely reach the critical velocity during their Main-Sequence phase. This results from the efficient outwards transport of angular momentum by the meridio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006